

Death Penalty Statutes 1993
(data from which to create a frequency distribution)

State	Minimum Age	State	Minimum Age
Arkansas	14	Texas	17
Virginia	15	California	18
Alabama	16	Colorado	18
Delaware	16	Connecticut	18
Indiana	16	Illinois	18
Kentucky	16	Louisiana	18
Mississippi	16	Maryland	18
Missouri	16	Nebraska	18
Nevada	16	New Jersey	18
Oklahoma	16	New Mexico	18
Wyoming	16	Ohio	18
Georgia	17	Oregon	18
New Hampshire	17	Tennessee	18
North Carolina	17		

Source: Kathleen Maguire and Ann L. Pastore, eds., Sourcebook of Criminal Justice Statistics. 1994. U.S. Department of Justice, Bureau of Justice Statistics. Washington, D.C.: U.S. Government Printing Office, 1995, pp. 115-116.

Proportions and Percentages

- Proportion (P): a relative frequency obtained by dividing the frequency in each category by the total number of cases.
- Percentage (\%): a relative $P=\frac{f}{N}$ frequency obtained by dividing the frequency in each category by the total number of cases and multiplying by 100.
- N : total number of cases
$(\%)=P(100)$
- Proportions and percentages are relative frequencies

Proportions and Percentages			
	Minimum Age	Frequency	Proportion
14	1	Percentage	
15	1	.037	3.037
16	9	.333	33.3
17	4	.148	14.8
18	12	.444	44.4
Total \mathbf{N}	27	$\mathbf{1 . 0}$	$\mathbf{1 0 0 . 0}$

Cumulative Frequency Distribution

Minimum Age	Freq. (f)	Percentage	Cumulative Frequency
14	1	3.7	01
15	1	3.7	02
16	9	33.3	11
17	4	14.8	15
18	12	44.4	27

Total (N) 27 99.9*

* Doesn't total to 100% due to rounding

Cumulative Percentage Distribution			
Minimum Age	Frequency	Percentage	Cumulative Percentage
14	1	3.7	3.7
15	1	3.7	7.4
16	9	33.3	40.7
17	4	14.8	55.5
18	12	44.4	99.9*
Total N	27	99.9*	
* Doesn't total to 100\% due to rounding			

Reading Statistical Tables

Basic principles for understanding what the researcher is trying to tell you (that is, questions you should ask yourself when reading a table):

- What is the source of this table?
- How many variables are presented? What are their names?
- What is represented by the numbers presented in the first column? In the second column?

Example of Table Format for Research Paper

Table 1: The Effect of Sex on Attitudes Toward the Death Penalty
In Favor of the Death Penalty (actual number of respondents reported)

Example of Table Format for Research Paper
Table 1: The Effect of Sex on Attitudes Toward the Death Penalty

Column \%		Percent In Favor of the Death Penalty*		
Row\%		Yes	No	Total
		52	51	
	Male	65	35	100
Gender		(36)	(19)	(55)
		48	49	
	Female	65	35	100
		(33)	(18)	(51)
	Total	100	100	100
		(69)	(37)	(106)

Chapter 4:

Central Tendency (mean, median, mode)

The Mode: An Example

- Which of the three candidates represents the "mode" for these candidates
- Variable=Candidates Candidate A-11,769 votes
Candidate B - 39,443 votes
Candidate C - 78,331 votes
Level of measurement? =
The Mode?=

The Mode: An Example

- Which of the three candidates represents the "mode" for these candidates
- Variable=Candidates

Candidate A - 11,769 votes
Candidate B - 39,443 votes
Candidate C - 78,331 votes
Level of measurement = nominal (why?)
The Mode= Candidate C (why?)

Finding Median Among Individual Cases

\# of hate crimes by state		Steps to Determine:
$\frac{\text { Cases }}{\text { NC }}=39$		1. Order the cases from
Penn	$=39$ $=141$	highest to lowest or vice
TX	= 287	
Ohio	= 255	
Fla	= 240	2. Add 1 to the total
States ordered low to high		number of cases ($5+1=6$)
NC	= 39	3. divide resulting
Penn	$\begin{aligned} & =141 \\ & =240 \end{aligned}$	number $2(6 / 2=3)$
Ohio	-255	
TX	=287	Count down that many
		ases to identify the
es $=5$		middle or median (Fla)

Formula for the Mean

$$
\bar{Y}=\frac{\sum f Y}{N}
$$

"Y bar" (\bar{Y}) equals the average or the sum of all the scores, Y, divided by the number of scores, N .

Calculating the mean with frequency distributions (grouped scores):

- Measures of Central Tendency Numbers that describe what is typical or average (central) in a distribution (e.g., mean, mode, median).
- Measures of Variability - Numbers that describe diversity or variability in the distribution (e.g., range, interquartile range, variance, standard deviation).

Chapter 5:
 The Importance of Measuring Variability

Considerations for Choosing a Measure of Central Tendency

- For a nominal variable, the mode is the only measure that can be used.
- For ordinal variables, the mode and the median may be used. The median provides more information (taking into account the ranking of categories).
- For interval-ratio variables, the mode, median, and mean may all be calculated. The mean provides the most information about the distribution, but the median is preferred if the distribution is skewed.

What is the range for these diversity scores?
(higher number means more diversity)?

What is the range for these diversity scores? (higher number means more diversity)?					
Steps to determine: subtract the lowest score \qquad from the highest \qquad to obtain the range of IQV scores \qquad					
State	IQV	State	IQV	State	IQV
California	0.80	Alabama	0.51	Indiana	0.27
New Mexico	0.76	North Carolina	0.51	Utah	0.26
Texas	0.74	Delaware	0.49	Nebraska	0.24
New York	0.66	Colorado	0.45	South Dakota	0.24
Hawaii	0.64	Oklahoma	0.44	Wisconsin	0.24
Maryland	0.62	Connecticut	0.42	Idaho	0.23
New Jersey	0.61	Arkansas	0.40	Wyoming	0.22
Louisiana	0.61	Michigan	0.40	Kentucky	0.20
Arizona	0.61	Tennessee	0.39	Minnesota	0.20
Florida	0.61	Washington	0.37	Montana	0.20
Mississippi	0.61	Massachusetts	0.34	North Dakota	0.17
Georgia	0.59	Missouri	0.31	Iowa	0.13
Nevada	0.57	Ohio	0.31	West Virginia	0.11
Illinois	0.57	Pennsylvania	0.31	New Hampshire	0.08
South Carolina	0.56	Kansas	0.30	Maine	0.06
Alaska	0.56	Rhode Island	0.30	Vermont	0.06
Virginia	0.53	Oregon	0.28		

The Range

Range - A measure of variation in interval-ratio variables.

- It is the difference between the highest (maximum) and the lowest (minimum) scores in the distribution.

Range $=$ highest score - lowest score

What is the range for these diversity scores? (higher number means more diversity)? Steps to determine: subtract the lowest score \qquad .06 from the highest \qquad to obtain the range of IQV scores \qquad					
State	IQV	State	IQV	State	IQV
California	0.80	Alabama	0.51	Indiana	0.27
New Mexico	0.76	North Carolina	0.51	Utah	0.26
Texas	0.74	Delaware	0.49	Nebraska	0.24
New York	0.66	Colorado	0.45	South Dakota	0.24
Hawaii	0.64	Oklahoma	0.44	Wisconsin	0.24
Maryland	0.62	Connecticut	0.42	Idaho	0.23
New Jersey	0.61	Arkansas	0.40	Wyoming	0.22
Louisiana	0.61	Michigan	0.40	Kentucky	0.20
Arizona	0.61	Tennessee	0.39	Minnesota	0.20
Florida	0.61	Washington	0.37	Montana	0.20
Mississippi	0.61	Massachusetts	0.34	North Dakota	0.17
Georgia	0.59	Missouri	0.31	Iowa	0.13
Nevada	0.57	Ohio	0.31	West Virginia	0.11
Illinois	0.57	Pennsylvania	0.31	New Hampshire	0.08
South Carolina	0.56	Kansas	0.30	Maine	0.06
Alaska	0.56	Rhode Island	0.30	Vermont	0.06
Virginia	0.53	Oregon	0.28		

What is the range for these diversity scores? (higher number means more diversity)? Steps to determine: subtract the lowest score _. 06 _from the highest \qquad .80 to obtain the range of IQV scores \qquad					
State	IQV	State	IQV	State	IQV
California	0.80	Alabama	0.51	Indiana	0.27
New Mexico	0.76	North Carolina	0.51	Utah	0.26
Texas	0.74	Delaware	0.49	Nebraska	0.24
New York	0.66	Colorado	0.45	South Dakota	0.24
Hawaii	0.64	Oklahoma	0.44	Wisconsin	0.24
Maryland	0.62	Connecticut	0.42	Idaho	0.23
New Jersey	0.61	Arkansas	0.40	Wyoming	0.22
Louisiana	0.61	Michigan	0.40	Kentucky	0.20
Arizona	0.61	Tennessee	0.39	Minnesota	0.20
Florida	0.61	Washington	0.37	Montana	0.20
Mississippi	0.61	Massachusetts	0.34	North Dakota	0.17
Georgia	0.59	Missouri	0.31	Iowa	0.13
Nevada	0.57	Ohio	0.31	West Virginia	0.11
Illinois	0.57	Pennsylvania	0.31	New Hampshire	0.08
South Carolina	0.56	Kansas	0.30	Maine	0.06
Alaska	0.56	Rhode Island	0.30	Vermont	0.06
Virginia	0.53	Oregon	0.28		

What is the range for these diversity score (higher number means more diversity)? Steps to determine: subtract the lowest score _. 06 from the highest \qquad .80 to obtain the range of IQV scores. \qquad 74					
State	IQV	State	IQV	State	IQV
California	0.80	Alabama	0.51	Indiana	0.27
New Mexico	0.76	North Carolina	0.51	Utah	0.26
Texas	0.74	Delaware	0.49	Nebraska	0.24
New York	0.66	Colorado	0.45	South Dakota	0.24
Hawaii	0.64	Oklahoma	0.44	Wisconsin	0.24
Maryland	0.62	Connecticut	0.42	Idaho	0.23
New Jersey	0.61	Arkansas	0.40	Wyoming	0.22
Louisiana	0.61	Michigan	0.40	Kentucky	0.20
Arizona	0.61	Tennessee	0.39	Minnesota	0.20
Florida	0.61	Washington	0.37	Montana	0.20
Mississippi	0.61	Massachusetts	0.34	North Dakota	0.17
Georgia	0.59	Missouri	0.31	Iowa	0.13
Nevada	0.57	Ohio	0.31	West Virginia	0.11
Illinois	0.57	Pennsylvania	0.31	New Hampshire	0.08
South Carolina	0.56	Kansas	0.30	Maine	0.06
Alaska	0.56	Rhode Island	0.30	Vermont	0.06
Virginia	0.53	Oregon	0.28		

Inter-quartile Range

- Inter-quartile range (IQR) - The width of the middle 50 percent of the distribution.
- The IQR helps us to get a better picture of the variation in the data than the range.

The shortcoming of the range is that an "outlying" case at the top or bottom can increase the range substantially.

Inter-quartile Range

- Inter-quartile range (IQR) - The width of the middle 50 percent of the distribution.
- It is defined as the difference between the lower and upper quartiles (Q1 and Q3.)
- $I Q R=q 3-q 1$

What is the IQR for these Diversity Scores?					
State	IQV	State	IQV	State	IQV
California	0.80	Alabama	0.51	Indiana	0.27
New Mexico	0.76	North Carolina	0.51	Utah	0.26
Texas	0.74	Delaware	0.49	Nebraska	0.24
New York	0.66	Colorado	0.45	South Dakota	0.24
Hawaii	0.64	Oklahoma	0.44	Wisconsin	0.24
Maryland	0.62	Connecticut	0.42	Idaho	0.23
New Jersey	0.61	Arkansas	0.40	Wyoming	0.22
Louisiana	0.61	Michigan	0.40	Kentucky	0.20
Arizona	0.61	Tennessee	0.39	Minnesota	0.20
Florida	0.61	Washington	0.37	Montana	0.20
Mississippi	0.61	Massachusetts	0.34	North Dakota	0.17
Georgia	0.59	Missouri	0.31	Iowa	0.13
Nevada	0.57	Ohio	0.31	West Virginia	0.11
Illinois	0.57	Pennsylvania	0.31	New Hampshire	0.08
South Carolina	0.56	Kansas	0.30	Maine	0.06
Alaska	0.56	Rhode Island	0.30	Vermont	0.06
Virginia	0.53	Oregon	0.28		
(Steps are provided on the next slides)					

What is the IQR for the Diversity Scores?

Steps to determine the IQR (Q3-Q1):

1. Order the categories from highest to lowest (or vice versa)
2. To obtain Q1, begin by dividing N (total number of categories or states) by 4 (or alternatively multiply N by .25). This equals 12.5 ?
3. We now know that $Q 1$ falls between the $12^{\text {th }}$ and $13^{\text {th }}$ category or, in this case, states
4. To find the exact number for Q1, determine the midpoint between the $12^{\text {th }}$ and $13^{\text {th }}$ states or between .59 and .57)
5. $\mathrm{Q} 1=$ \qquad

What is the IQR for the Diversity Scores?

Steps to determine the IQR (Q3-Q1):
6. To obtain $Q 3$, begin by multiplying 12.5 by 3 (or alternatively multiply 12.5 by .75). This will give us
7. Based on this number, Q3 falls between the $37^{\text {th }}$ and $38^{\text {th }}$ states
8. Determine the midpoint between these two states. This equals This tells us that 50% of the cases fall between .58 and .24.
9. To obtain the IQR subtract Q3 from Q1 which equals \qquad or the middle of the middle 50% of the cases.

What is the IQR for the Diversity Scores?

Steps to determine the IQR (Q3-Q1)

6. To obtain Q3, begin by multiplying 12.5 by 3 (or alternatively multiply $\mathrm{N}(50)$ by .75). This will give us 37.5
7. Based on this number, Q3 falls between the $37^{\text {th }}$ and $38^{\text {th }}$ states.
8. Determine the midpoint between these two states. This equals_. 24 . This tells us that 50% of the cases fall between . 58 and .24 .
9. To obtain the IQR subtract Q3 from Q1 which equals . 34 or the middle of the middle 50% of the cases.

What is the IQR for the Diversity Scores?

Steps to determine the IQR (Q3-Q1):

1. Order the categories from highest to lowest (or vice versa)
2. To obtain Q1, begin by dividing N (total number of categories or states) by 4 (or alternatively multiply N by .25). This equals 12.5 ?
3. We now know that Q1 falls between the $12^{\text {th }}$ and $13^{\text {th }}$ category or, in this case, states.
4. To find the exact number for Q1, determine the midpoint between the $12^{\text {th }}$ and $13^{\text {th }}$ states or between .59 and .57)
5. $\mathrm{Q} 1=\ldots .58$

Measures of Variability: the Variance

- The variance allows us to account for the total amount of variation that includes the variation of all the categories.
- The amount of variation in each category is considered when calculating the variance.
- The variance is an important statistic that is used in most other sophisticated statistics. Therefore, it is important for you to give it particular attention.

Determining Variation in the "Percentage Increase" in the Nursing Home Population, 1980-1990	
Nine Regions of U.S.	Percentage
Pacific	15.7
West North Central	16.2
New England	17.6
East North Central	23.2
West South Central	24.3
Middle Atlantic	28.5
East South Central	38.0
Mountain	47.9
South Atlantic	71.7

Percentage Change in the Nursing Home Population, 1980-1990		
Nine Regions of U.S.	Percentage	$\boldsymbol{Y}-\bar{Y}$
Pacific	15.7	15.7-31.5 = -15.8
West North Central	16.2	16.2-31.5 = -15.3
New England	17.6	17.6-31.5 = -13.9
East North Central	23.2	23.2-31.5 = - 8.3
West South Central	24.3	24.3-31.5 = - 7.2
Middle Atlantic	28.5	28.5-31.5 = - 3.0
East South Central	38.0	$38.0-31.5=6.5$
Mountain	47.9	47.9-31.5 = 16.4
South Atlantic	71.7	71.7-31.5 = 40.2
$($ mean $=31.5$)	$\Sigma \mathrm{Y}=283.1$	$\Sigma(Y-\bar{Y})=0$
How might we take into account the variation that exists for each category?		
Problem: when you add up the distances you end up with zero rather than the total variation from all the categories.		

Percentage Change in the Nursing Home Population, 1980-1990		
Nine Regions of U.S.	Percentage	$Y-\bar{Y}$
Pacific	15.7	15.7-31.5 = -15.8
West North Central	16.2	16.2-31.5 = -15.3
New England	17.6	17.6-31.5 = -13.9
East North Central	23.2	23.2-31.5 = - 8.3
West South Central	24.3	$24.3-31.5=-7.2$
Middle Atlantic	28.5	28.5-31.5 = - 3.0
East South Central	38.0	$38.0-31.5=6.5$
Mountain	47.9	47.9-31.5 = 16.4
South Atlantic	71.7	$71.7-31.5=40.2$
(mean $=31.5$)	$\sum \mathrm{Y}=283.1$	$\Sigma(\mathrm{Y}-\overline{\mathrm{Y}})=0$
- One solution would be to take the absolute value for each number (ignore the minus signs). Unfortunately, absolute values are very difficult to work with mathematically. - Fortunately, there is another alternative.		

Measures of Variability: the Variance

The Variance is the average of the squared deviations from the mean.

$$
s_{Y}^{2}=\frac{\sum(Y-\bar{Y})^{2}}{N-1}
$$

In our example we would take the sum of the squared deviations (2733.92) and divide this number by the total number of cases minus one ($9-1=8$). This would give us 341.74 or the variance for the Percent Increase in the Nursing Home population by region.

Percentage Change in the Nursing Home Population, 1980-1990		
Nine Regions of U.S. Percentage	$\begin{array}{lc} Y-\bar{Y} & (Y-\bar{Y})^{2} \\ \text { (squared deviations) } \end{array}$	
Pacific 15.7	15.7-31.5 = -15.8	249.64
West North Central 16.2	16.2-31.5 = -15.3	234.09
New England 17.6	17.6-31.5 = -13.9	193.21
East North Central 23.2	23.2-31.5 = - 8.3	68.89
West South Central 24.3	$24.3-31.5=-7.2$	51.84
Middle Atlantic 28.5	28.5-31.5 = - 3.0	9.00
East South Central 38.0	$38.0-31.5=6.5$	42.25
Mountain 47.9	$47.9-31.5=16.4$	268.96
South Atlantic $\quad 71.7$	71.7-31.5 $=40.2$	1616.04
(mean $=31.5$) $\quad \Sigma \bar{Y}=283.1$	$\sum(\mathrm{Y}-\overline{\mathrm{Y}})^{2}$	2733.92
- The best solution is to square the differences before adding them up (when two negative numbers are multiplied the resulting product is a positive number).		

Measures of Variability: The Variance

To Sum Up:

The Variance is the average of the squared deviations from the mean.
The Variance is a measure of variability for interval-ratio variables.

$$
s_{Y}^{2}=\frac{\sum(Y-\bar{Y})^{2}}{N-1}
$$

Measures of Variability: Standard Deviation

- To obtain the square root of the variance simply enter the number (variance) into your calculator and then push the square root button.
-If the variance is 341.74 the standard deviation would be 18.49 \qquad This tells us that the percent of change in the nursing home population for the nine regions is widely dispersed around the mean (mean $=31.45$).
- Thus, the standard deviation is a measure of the average amount of variation (or deviation) around the mean.

Measures of Variability: Standard Deviation

In Sum

- Standard Deviation - A measure of variation for interval-ratio variables; it is equal to the square root of the variance.

$$
s=\sqrt{s_{Y}^{2}}=\sqrt{\frac{\sum(\boldsymbol{Y}-\overline{\mathbf{Y}})^{2}}{N-1}}
$$

Measures of Variability: Standard Deviation

(a look at what's to come in future chapters)
We will see later that when the data are "normally distributed" around the mean (produce a normal curve), 34% of the scores will be one standard deviation above the mean and 34% will be one standard deviation below the mean.

Scores are often "normally distributed" around the mean when a random sample has been used to obtain the scores or there are a large number of cases.

Considerations for Choosing a Measure of Variability

- For ordinal variables, you can calculate the IQR (inter-quartile range.)
- For interval-ratio variables, you can use IQR, or the variance/standard deviation. The standard deviation (also variance) provides the most information, since it uses all of the values in the distribution in its calculation.

